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Spinors in Quantum Space with Torsion 
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Dirac spinors are considered in quantized fiber-bundled spaces. It is shown that 
the spin connection has the same internal structure as in the Riemann-Cartan 
space as well as the quantized one. It is also assumed that the neutrino oscillation 
mechanism can be linked te the quantized and fibered character of the space at 
small distances. 

1. INTRODUCTION 

The study of the space-time structure at small distances is one of the 
main problems in the modern theory of  elementary particles. Due to the 
success of the theory of supersymmetry (see, for example, De Witt, 1965; 
Salam and Strathdee, 1982; Scherk and Schwarz 1975) there arose a more 
or less confident supposition that space-time can not only be four- 
dimensional, but also many-dimensional; i.e., at the beginning of the 
development of the universe, space-time could have had its "true" 10 (or 
11) dimensions, and thus the exact interaction symmetry could have been 
present. On the other hand, it is well known that the extension of space-time 
dimensions gives the possibility of unifying all the interactions including 
gravity. Such a theory has its problems, but their consideration is beyond 
the scope of this paper, and is studied in detail elsewhere (Aref 'yeva and 
Volovich, 1985). The transition from higher temperature to the temperature 
of hadronization of quarks or symmetry is worked out, more or less in 
detail, for the case where the space has a fiber-bundle structure (see, for 
example, Bais and Batenburg, 1984). In the present paper, we attempt to 
explain the mechanism of spontaneous breaking of the symmetry, taking 
into account both the quantized and fibered character of the space. We also 
assume that the quantized character of space at small distances is an 
inalienable behavior of  the given material object. 
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The quantized character of space is considered by Dineykhan and 
Namsrai (1985; 1986a, b) as a small perturbation of the classical coordinates. 
The addition characterizing the quantum and fiber-bundle properties of 
space is a small stochastic perturbation and its magnitude is of a higher 
order than in the usual (classical) space. Proceeding from this, Dineykhan 
and Namsrai (1985, 1986a, b) introduced space quantum properties in the 
following way, as a small stochastic deviation from the classical coordinates: 

x ~  ~ = x ~ + /F~(x )  (1) 

where the x"  are the coordinates of usual (classical) space-time; l is a 
dimensional parameter characterizing the region of quantum properties of 
the space; F"(x)  is determined from the tetrad field e2(x): 

t-(x) =r%"~(x) 

and expresses the "internal" space that corresponds to every point of the 
usual (classical or world) space; and F a is the generator of the symmetry 
group that acts in the internal space. For further concrete calculations we 
will use the generator of group SU(2), i.e., the Pauli matrix instead of F a. 
In Section 2 we consider the geometry of the space with coordinates )~", 
and Section 3 studies the Dirac spinors in the quantized space, obtains the 

/x A 
equation for the tetrad field e,  (x) in the space with coordinates x ~, and 
also determines the spin connections. Finally it is shown that the mechanism 
of neutrino oscillation can be linked to the physics at very small distances, 
namely to the quantized as well as the fibered character of the space. 

2. THE GEOMETRY OF THE SPACE WITH C O O R D I N A T E S  ~ 

We will show that the space with the coordinates ~ determined in (1) 
is fibered and the curved space with coordinates x ~' is its basis. For this 
purpose we consider the changes of the 8~ coordinate of the fibered space 
under the usual Lorentz rotations of the base, i.e., 

1 
6 x  s" = w ~ x  ~" [ 

(z) 

O)~v-t.-  O0 vp" = 

Then, taking into account the transformation of the tetrad field e2(x), 
~ e ~ ( x )  ~ " " " k = w . e a ( x ) - x  to , , ,O .ea(x )  

under the Lorentz rotations (2) and after simple calculations, we have 
8 ~ k =  k ^ n  to . x  - I x m w  ~ , o , F k  ( x ) 
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Thus, the standard form (see, for example, De Witt, 1984) for the transforma- 
tion of the coordinates of  the fibered space corresponding to (2) is obtained. 
Making the necessary calculation and taking into account (1) and (2), one 
gets: 

8 d ~ k - d & ~ k =  l OnFk(x) oa~ dx m (3) 

where d is the usual symbol of total differentiation. From the relation (3) 
one can see that the operations 8 and d are noncommutative, though in 
the usual Riemann space they are commutative. Therefore the space with 
coordinates ~" determined in (1) is fibered and the curved space with the 
coordinates x ~ is its base. 

The expression for the quantized coordinates 9~" determined in (1) can 
be represented in the following form: 

;~  = U ( t ) x "  

where U ( l ) =  1 + lFV(x)O~ is the operator in the curved space. Using the 
determination of  the momentum operator, i.e., P~ = -iO~ (in the units such 
that c = h = 1) for U(l),  one can write 

~J(l) = 1 + iIr~'(x)P,, ~- exp[ilr~'(x)P,,] ( 4 )  

Consequently, U(1) may be considered as a translation operator in the 
Riemann space with the translation vectors F~(x). In the general Lorentz 
transformations the translation vectors are commutative, but in our case 
the vectors F~(x) are noncommutative, thus creating the Clifford algebra: 
{FV(x), F~(x)} = 2g~"(x). It is obvious that the operators F~(x)P~ are com- 
mutative, satisfying the identity 

0--1(/)  O(1) = ~f(1) ~..~--1(i) ~ 1 (5) 

Hence, the operator 

[~-1(i)  = exp[ - i lF"(x )P , , ]  (6) 

is an inverse operator to the operator U(1). From this it follows that we 
will change from usual space to the fibered one by the operator U(l) and 
the converse by U-~(1). From the relations (4) and (5) it follows that the 
operator U(1) is a translation operator; therefore, its action on the function 
of  the matter field can be determined in the standard form (see, for example, 
Gasiorowicz, 1966): 

O( t)~(x) 0-'(1) = ~(~) 

where q~(x) and ~p(~) are functions of the matter field in the usual and 
fibered spaces, respectively. 
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For the purpose of illustration let us consider the action of the operator 
U(l) on the following quantities: 

(i) The partial derivatives, i.e., 0~ : 

~](l)Ot.[]-l(l) = [1 + ilr~(x)P~]O.[1 - ilrr162 

= i P .  - i l [ r ~ ( x ) ,  P . ] P ~  

and taking into account the action of the momentum operator P .  i.e., 
[ f (x ) ,  P . ]  = iOttf(x), we have 

(~ .0r~(x)~ o x  ~ o o 
g ( / ) 0 / x g - l ( / )  = of t - iT)=o~t ,  axC~--oi~lz (7) 

On the other hand, the translation law of the gauge field A. (x )  for the 
symmetry group U(1) and the partial derivatives 0.  are equivalent. Then 
from (7) it follows that 

^ ^ 0x ~ ^ 
U( l )A . ( x )  U-'(I)  = ~x~ A~.(x) =- A . ( x )  (8) 

(ii) Let us determine the y ' ( ~ )  Dirac matrix in the space with coordin- 
ates ~ .  Anologously to the partial derivatives, we have 

7" (2)  -= U(/) y~'(x) U-~(I) = [1 + iIF'~(x)P~]y"(x)[1 - iIF'~(x)P,d 

= y" (x )  + ilF'~(x)[P,,, y" (x ) ]  

where y ' ( x )  is the Dirac matrix in the curved space and is written in the form 

y ' ( x )  = yae~(x) 

where ~/a is the Dirac matrix in fiat space, i.e., 3za~'b+3,b3," =2~7 "b and 
diag ~7 ~b= ( + - - - ) .  Taking into account the action of the momentum 
operators, we obtain 

T"(~)  = T"(x)  + ITarbe~(x) &e2(x)  

Let us now consider the expression e~(x) O~e2(x). Using the tetrad field 
e".(x) = Ox~/O~ b (~b are coordinates of fiat space), and after some calcula- 
tions, it can be shown that the following identity holds: 

e'~(x) O,~eX(x) = e'~(x) O,~e~(x) 

Consequently, for the Dirac matrix 3,~(~) in the fibered space, we obtain 

y~'(~) : y~(x) 0 ~ "  (9) 

On the other hand, the Dirac matrix y~ ' ( ; )  in the fibered space is presented 
in the standard way through the tetrad field e2(~): 

y" (~ )  = 3,%a~(9~) 
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where e~(~) is the tetrad field in the fibered space and can be written in 
the following way: 

e~(~) = U(1)e~(x)  l~- l ( t )  (10) 

Making some simple calculations, we have finally 

e2( ; )  = e~(x) 0 ~  ~ (11) 

From the formulas (7) and (9) it follows that the value "y'(x)O, under the 
transformation from basis into fiber is invariant, i.e., 

v~(x) o / o x "  = ~'~(.~) o /o~  ~ 

(iii) Now let us determine the metrical tensor g~"(~) in the space with 
the coordinates 2", given in (1). The contravariant metric tensor g~"(2), 
analogous to the contravariant vector, can be written in the following form: 

g " ( ; )  ~ O ( l ) g " ( x )  U-~(1) 

Using the definition of the metric tensor g ~" (x) in the curved space though 
the tetrad field e~(x) ,  i.e., 

g~ ' (x )  = eS(x)e~d(x)rl ab 

and taking into account the formulas (10) and (11), we have 

g~"(~) = g'~O(x) 0,~5 ~ Oo; '~ (12) 

Dineykhan and Namsrai  (1985) showed that the metrical tensor g ~ ' ( ; )  
determined in (12) consists of  two parts, symmetrical and antisymmetrical 
ones. In the space with the metrical tensor determined in (12), the torsion 
tensor is different from zero. 

3. THE SPIN C O N N E C T I O N  IN THE FIBERED SPACE 

The Riemann space is a basis of  the fibered space with coordinates ~ 
determined in (1). Therefore, let us consider some standard relations in the 
RAemann space, which will play an important role in our further calculations. 
The Dirac equation is 

[ i y " ( x ) V .  - M]~b(x) = 0 

where M is the mass and 4,(x) is the fermion state function; 7" (x )  is the 
Dirac matrix in the curved space; V.  is the convariant derivative, which is 
equal to 
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where I ~ ( x )  is the generator of the translation group; {~} is the usual 
Christoffel symbol; or ab is the spin matrix; to~ b is the spin connection, which 
satisfies the following equation: 

O~e~,(x)-r e~(x) =0 (14) 

and the solution can be written as 
ab 1 c c a b oa ~ =ge~(x)(f~ab - -~bc--~ac)  (15) 

where 
c / z  l ,  c c II ab = ea (x)  eb(x)[O~.e . (x )  -- Ove.(x)] 

If the transformation from basis (Riemann) space to fibered space is realized 
by the translation operator determined in (4), then the spinor field 4'(x) in 
the fibered space can be expressed through the field 0(x) trivially (see, for 
example, Gasiorowicz, 1966): 

0(:~) = [J(1)tp(x) ~J-l(1) 

From the Dirac equation in Riemann space, after some simple calculations, 
taking into account the relations (5), (7), and (9) we obtain 

[iy~(~) V~(~) - M]~b(~) = 0 

where the y~(~) are determined in (9) and 

_ Ox~{ i ~,,b "~ 
V~(~) -0-~-~O~-~oa. o'.bJ +F~(~) I~ (~)  (16) 

where F.~(x) is the affine connection and I~(~) is the generator of the 
translation group in fibered space, respectively. Dineykhan and Namsrai 
(1985) showed, that the affine connection in the space with coordinates ~" 
determined in (1) can be written in the form 

{ A } . j f _ A ) ,  O x ~  
g ( x ) ~  o x d g ~ ( x )  (17) F ~ ( ~ )  = v~ o x  ~ 

-.b is the spin where gAV(x) is the metrical tensor in the Riemann space, oa. 
connection in the fibered space and similar to (14) satisfies the following 
equation: 

0 OxP ~a e b ,^ ,  x .. ,~ 
0~" e~(~) - -~X.  WO,b .~.X) + r . ~ ( x ) e . ( x )  = o 

After simple calculations using (10) and (17) we have 

Oa.,b-~ = vtx e . (x )eb(x ) -eb(x )O~e~. (x )+ef , (x )Q;~ .  (18) 
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where Q ~  is the torsion tensor obtained in Dineykhan and Namsrai (1985) 
and can be expressed through the affine connection F ~ ( ~ )  determined in 
(17) in the following way: 

C A  u ~ -  A a A ~ A ^ e a ( x ) Q ~  = F ~ ( x )  - F ~ ( x )  

Introducing the new operator determined in the form 

and taking into account the relations (9), (16), and (18), we obtain after 
some simple calculations 

-~zw Oak)--~ly ( x ) e ~ ( x ) e r  cr~ b (19) 

where Y~r is the contorsion tensor and is equal to (see, for example, Yajima 
and Kimura, 1985) 

y ~  1 A A A :~(c,~+ (20) C.~ + C ~.) 

We use the following representation for the Dirac matrix Y5 in the curved 
space: 

w = - •  (21) 
4~ 

where 

E , , ~  = e~,~3~, ~ 0 1 2 3  = 1 

and e = det(e~). 
Calculations taking into account (21) give from (19) the following 

expression for A: 

A = i~ 1 �9 a b  1 y (x ) [0 . -3 , to  O'~b+ZysA.(x)] (22) 

where 

A~(x)  = E ~ Y  ~ (23) 

and A~(x)  is a chiral gauge field for the U(1) group in the curved space. 
Studying the Riemann-Cartan space, Yajima and Kimura (1985) obtain an 
analogous expression for the operator A determined in (22). Therefore it 
can be assumed that the spin connection has similar internal structure in 
the Riemann-Cartan space and as well as in the space with the coordinates 
~ determined in (1). 
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For the sake of completing the picture, we consider the Rarita- 
Schwinger spinor. It is common knowledge that under the general Lorentz 
transformation the Rarita-Schwinger spinor changes simultaneously as a 
vector and spinor. Therefore, taking into account (8), we can write the 
spinor field with spins 3 in the fibered space in the form 

Ox ~ 
q,,.( ~) =- ~ (  l)q,,~(x) U( l) = o - ~ [ 0 d x )  + lr'~(x)O,~O~.(x) ] 

where O,,(x) and 4'v(~) are Rarita-Schwinger spinors in the curved -basis) 
and fibered spaces, respectively. 

4. ON THE OSCILLATION OF THE NEUTRINO 

The Dirac equation for massless particles is written in the standard 
form (see, for example, Hehl et al., 1976; Obukhov 1983) by taking into 
account the torsion tensor: 

/ l  A A A ^ v A ^ v (x) [V. (x) - r , .v (x) IA(x)]4 , (x)  = o 

where V.(~)  and F ~ ( ~ )  are determined in (16) and (17), respectively; q,(2~) 
is the neutrino field in the fibered space. Using (19) and (22), we have 

[y~(x)V u - y~(x) y sA , (x ) ]0 (x )  = 0 (24) 

where y~(x)  is the Dirac matrix and ~0(x) is the neutrino field in the curved 
1 .  ab space; V~ = a~-~uo~ Oak and A ~ ( x )  is the chiral gauge field determined in 

(23). Then the formula (24) represents the Dirac equation for the neutrino 
in the usual curved space with torsion. In the framework of the standard 
spinor theory the second term in equation (24) must be the mass of  a given 
particle with the state function ~O(x). Consequently, the neutrino in the 
quantized and fibered space has a mass the value of which is equal to the 
second term in equation (24). On the other hand, it has been shown 
(Dineykhan, 1986a, b) that, if the space is quantized and fibered, then the 
motion of a particle in the vacuum is equivalent to motion in the medium, 
leading to the effect of charge screening and also the creation of a frinction 
force conditioned by its nature against extermal forces, including the gravity 
force. These effects are consequences of the quantized character of the space 
at small distances. If  the motion of a particle in the quantized space is 
equivalent to the motion in the medium, then the mass of the neutrino in 
the quantized space is not equal to zero and consequently the neutrino is 
considered as a massive particle in the medium. If the mass of the neutrino 
is not zero in the medium, then neutrino oscillation occurs. 

We emphasize that the neutrino oscillation mechanism can thus be 
linked to the quantized and fibered character of the space at small distances. 
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